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1. INTRODUCTION

A number of -important recent advances in econometric theory are

related to the methods of truncated regression model — the regression
model in whichlﬁ . range of the dependent variable is restricted to some

interval of ( Ij. usually the non-negative half-1ine, such as the income
of an individual. Powell [6]\ [7] used the C}in;rm criterion with some

modifications in estimating the regression coefficients in truncated linear

models. He proved the consistency and asymptotic normality of his estimates

under a set of conditions. On the other hand, Nawata's paper?ffi—uses the

ordinary Lz;horm (least square) criterion, along with a grouping and adjust-

ment of the observed data. In his view, his method has the merit of easy

computation compared with the method of Powell.

-

In this paper:we borrow the basic 1dea of Nawata in grouping and ad-
Thel

Jjusting the observed data. But we shall make simplifications in the proce-

dure of grouping, which enables us to make sgbstantia] extensions of the

ardoa, roae’

results of 6] under weakened conditions. | R SN [ 4ear
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2. ESTIMATION OF PARAMETERS IN NON-TRUNCATED CASE

2.1. Assumption of the Model

Let (xl,Yl), cees (Xn,Yn) be iid, samples drawn from a Rde‘-va1ued
random variable (X,Y). Denote by m(x) the median of the conditional distri-
bution of Y given X = x. We suppose that the conditional distribution func-

tion has a form

P(Y < y|X = x) = F(y - m(x)) (2.1)

where F is a fixed distribution function which is not assumed to be known.

Under this assumption we can give Yi a convenient expression as follows:
Y'i = m(xi) + eia 1=1,...,n (2-2)

where e,, ..., e, are iid, with common distribution F, and Xjs eous X s
€1s «..s € are mutually independent., The probability measure of X will
be denoted by u. In this section we make the following assumption concern-

ing F and u. Further assumptions will be introduced when needed.

1°. F(0) = 1/2, f(x) = F'(x) exists in some neighborhood of 0,
£f(0) > 0 and f'(0) exists.

2°, v = COV(X) exists, and V > 0.

3°. u has no singular component. If u has an absolute continuous
component with density g(x), then for sufficiently small a > 0, there
exists an open set Ga such that the symmetric difference between Ga and

{x: g(x) > a} has Lebesgue measure zero.

In this section we assume that the median-regression function m(x) has

a linear form

m(x) = a + B'x ' (2.3)

D %o o ot o = o



-
-

IR

cwe
g

ERODL N AR

Fallalhe W%

v
4
¢

t

and the problem is to estimate the parameters a, 8, using the samples
(xi’vi)’ i=1,

We shall use [la]| to denote the Euclidean length of vector a, and al¥)
to denote the u-th coordinate of a. If A is a vector or matrix, we use |A|

to denote the maximum of the absolute values of the elements of A.

2.2. The Main Result of Section 2
-€
1

Choose ¢, € (o, %%), €y € (%. 1- del). ln =n T, ¢ 0. Decompose

d

R™ into a set J; of supercubes having the form:

(1) (d)y. () )
{(X ’-oo,x )' ai‘en 5 X < (a.i + ])ln! i lguou’d}o
a; = 0,11,22, i=1,...,d. (2.4)
For J e J;, use #(J) to denote the number of elements in the set

JfI{Xl,....Xn}. Write

€
{9: 0 e 3%, #(3) > con 2y - {Jni""’Jncn} (2.5)

We have

l-¢ de,-¢'
c, < caln 2 <n 1 (2.6)

for some ¢' > 0, when n is large. Further, write

ST Re SRR R TN ¢ SIS DINUOR S 9 b3

By definition,

ng2cgn S 1= e : (2.7)
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n
.= 2 X (3)/n
ni jzl ni i

><
]

-<
[}

ng = med(Y (1)a .0y (n)))

ni med(eni(l)o....eni("1))

nl + n2 + LN I ] + nc
cn - n
L oniXgi/MNps ¥y = iZl"ivni/"i' - 2 "i€ni/Nn

X(n) = (XniJYH,...,Xc ;7 )'. Y(n) (Y ..,Ync )', e(n) = (eni,....en

Wn = diag("i""’"cn)' Pa = X(n)¥n¥(n)-

Define

s =B+ P X{n)¥n€(n)* a, =a+¥X(8 - én) te (2.8)

and (&gk). égk)), k=0,1, ..., by the following induction process. Set

~(0) _ -1, ~(0) v w20
B’(‘ ) = Pn X(n)HnY(n), 0'(‘ ) = Yn - an’(' ) (2.9)

which is the solution of the weighted least squares problem.

nlY . - a- x;n.e)2 = mint. -

a(k)

Suppose that Bn and &ﬁk) have already been defined. Put

= -

5y 2y @) - ) - xR, s ey (20)
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t
: k+l k+l),. .
Y,(,,- ) . med(v,(n- M3): 3= 1,....ny) (2.11)
§
3 Flk+1) _ & (k+1)
¢ Yn " 1.Zlniyni /Nn
'l
" (k+1) _ , (k+1) (k+1),
; v(n) - (Ynl seevs¥ne )
I. n
)
; and then define
L}
L
» ~(k+l) _ o-1,, (k+1) ~(k+1) _ w(k+1) _ +,~(k+1).
,): Bﬂ Pﬂ X(n)HnY(n) ’ Gn Yn X.;Bn (2.12)
Y
h s .
A which is no other than the solution of the weighted least squares problem
| Byl
L~ k+l 2 _ .
! Z "i(Yni -a- Xﬁis) = min!.
W i=1
iy (k+1), .y, . . .
' The Yni (j)'s, defined in (2.10), is an "adjustment" of the original
)
't
N observation Yni(j) of the dependent variable Y. For if we know B, we would
1)
% set Y;i(j) = Yni(j) - (Xni(j) - Xni)'s. and get the exact model Yr. =
a + xﬁis + e’ i=1, ..., e This kind of adjustment was introduced by
)
i- Nawata (5], who used it to make a "first stage” estimate of a, 8, which
ﬁ' are used to form a "second stage" estimate of a, 8, in case that the depen-
i dent variable Y is trucated. We shall use this idea in the next section
; also. The present work differs from that of Nawata's in some important re-
N
g: spects. First, the decomposition of the range of independent variable is
e greatly simplified, and the conditions imposed on this decomposition is very
)
$ simple, as compared with the very complicated one introduced by Nawata.
ﬁ Second, we allow the number of sets in the decomposition to go to infinity,
I which is conceptually reasonable and enables us to reach the optimal covar-
A _
f fance matrix of the limit distribution. Third, we do not assume that the
|
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range of the independent variable is bounded. Fourth, the number of
iterations in our iterative process has a predetermined bound (see Theorem
1 below), while in [5] this number is indefinite. From a practical point
of view, it is not reasonable to define an "estimate" by infinite number

of iterations.

Now we state the main theorem of this section:
THEOREM 1. Choose an integer r such that
re; < 1/2 < (r + 1)¢. (2.13)

Then under the conditions stated in Section 1, we have

a(r+l)
*n * L -1,..2
/n (.(M)) - ( ) — N(0,A™"/4£°(0)) (2.14)
B 8
- o -1/2- R -
B N R RO R A (2.15)

where A = (Aij) is a (d +1) x (d + 1) matrix, with

- - - ey(d) - (i),(3) c s
Aoo =1, Aoj Ajo = EX‘Y7, *ij E(x*"/xY"Y), i, 3=1,...,d.

(2.14) means that, as an estimator of (a«,B), (&£r+l). §§r+1)) possesses

an asymptotically optimal covariance matrix.

2.3. A Lemma
The proof of Theorem 1 depends on a limiting theorem concerning the
linear forms of {em.,....enc 1, which we consider separately in this sub-

n
section,

i :
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W
N LEMMA 1. Let Cys Cos one be natural numbers such that
0 lim ¢ /Y0 = 0. (2.16)
o: N>
:-
! For each n, give a set of iid, variables {egg): j=1,...,ni, i=1,...,cn}.
¢ Here
-
| np+tn,+..o4+n. < (2.17)
) n
. 1im(/A Tog n) /min(ny,...,n_ ) = 0. (2.18)
N> n
Assume that the distribution function F of ei?) does not depend on n, and
3 F satisfies condition 1° of Section 2.1. Let a (3): =, e, Jolh.. ooy
. be constants satisfying the following conditions:
: ¢,
iglniani(a) =0, J=Tsasry, n=1,2,... (2.19)
: Cz" (3y)a_.(3,) ( )
’ lim n.a_.(jyla :(j,)/n = a, . 2.20
roe i1 ini*vl1'"nitv2 313
E exists and finite for jl'jz = 1,...,r.
Define egn) = med(eggz...,egg)), is= 1....,cn, and
c .
£ s = Znna (e{Myvm, 5 =1 r, g = (¢ g ). (2.21)
! nj i=1 AR » J A 1) S | M *
2
3 Then we have
X
y L 2
gy — Nr(O,A/4f (0)) (2.22)
‘ as n » =, where A is the matrix with elements 1. . .
% JIJZ

K
i
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Proof. Consider first the case r = 1, and write for simplicity

- - _ 2
a '(1) = am" Enl = gn’ 7\11 =g .

Given § > 0. By the assumption made on F, we have F(8) > 1/2. Using

an inequality of Hoeffding [4], we get

n.
1
P(e,‘") 28) < PH% jgll(egg)) >8) - (1 - F(8))] > F(s) - %)

< 2 exp(- n.(F(6) ~ 172)%/3).
From this and (2.18), we have |
P(egn) > 8) < exp(- /n), i=1,...,c
for n large. Similarly it is shown that
P(egn) < -8} < exp(- vn), i=1,...,¢

for n large. Hence for o large we have

7 cznp(|e(.")| >8) < T ~.-fR
" n=ng i=1 o= _n=no')ie < >

Therefore, wpl (with probability one) we have

Iegn)l < &, i=1,...,¢ (2.23)
for n large. .
Denote by {Uij’ i=1,2,..., j=1,2,...} a family of iid. random variables

with common distribution R(0,1), and

(n) _ .
Ui = med(Uil,...,Uini), is= 1....,cn.

1 exists in some neighborhood of

By assumption on F, the inverse function F~
1/2, so we can find some § > 0 such that the distribution functions of

F'l(Ugn)) and egn) coincide on (-6,58). From this and (2.23), it is seen !

T e

A G A0 A N N R B e R Al - N o
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" that the assertion

g £, —= N(0, o%/4£%(0)) (2.24)
-."\. .

A

? : is equivalent to

O

y AR (n)y,vm

‘ £y Zn a,iF U™ L w0, oPrar?(o)). (2.25)
s

According to a theorem of Csorgo and Revesz concerning the strong

o

approximation of quantile process (see [2]) there exist independent N(0, 1/4)

? random variables n ., ..., n__ , such that

¢ ni nc,

% PO/ (U™ D)o n 150 2R T0g n, +2)) < Be™Z, for 2] <D/,  (2/26)
) n’ -1 1 - - )|

)

ff where A, B, C, D are positive absolute constants. Choose Z = 5 log ni/c

V and put Kl = A + 5/¢c, we have

W,

,4 = n (n) 1 172 ) 5/2

K nzn 'Z1P(M-‘?|(U" -3) = noil 2 Kyng " “logn,) < B n=no',i n < ®,

! Y .

Y Therefore, wpl we have

: (n) _ 1 1
? n - » - .

: |Ui - (7 + nni//F;)| < Kyni logn,, i=1,....¢, (2.27)
‘

i for n large. From this it follows that (2.25) is equivalent to

3 Ch

" L 2,262

q Z nianiF (7 + g/ g+ 80}/ —= N(0, o°/4£%(0)) (2.28)
I

B

& where Onis i=1, ..., ¢, are random variables such that

s

W

‘l

‘l

‘l

e
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legi !l < Kln}lhg ng»  i=lic, n=1.2,... . (2.29)

Since 2n . = N(0,1), it is well known that (see (3], page 131)

P(Inni“/ﬁz e) <2 — exp(- %(2@5)2) < e"/i
Y ﬂzv’nie
fori=1, ..., Ch and large n. Hence we have for large N,
g cn ™ /_
I IPUngli/mi2e)c I Mme™™ <w
n=n, i=1 ' n=n,

which implies that wpl we have

Ingg [/ < e, 1 =1, (2.30)

n
for n large. Considering (2.29), (2.30), and the assumption made on F,
we get

PG + g7y + 000) = 703 /g * 8pg) (2.31)
* %(r ¥ eni)("ni/'}i; ¥ eni)z

where r = -f'(o)/(f(o))3, and €pjs sevr Ep ATE random variables such that
n

1im max(lenil..

) =0, a.s. (2.32)
n->o .

.,IE I
ncn

From (2.31), we can rewrite (2.28) as follows:

*=T . 4+ ...+ 2.33

&n nl TnS ( )
where
t P 2P AP AP R AT AW AR . T W WdW - LTSI T N T P T ) SR TR NS ) n . ' W 3
ML R . SN " .u.I'mnl't Lt A WA J" il " L I CA A R M LMY, W Ny N MO W LX)
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C
Tn1 = Lim1/Mj2pini//0F(0)

Cc
n
Tn2 = 1i=1Mi2,4%0¢//(0)

e e T

2

c
Tn3 N zi:1 %(r * eni)ani"ni/')if(o)

™

C
Toa = Lidg(r + cpgdngap ongng //Af(0)

=
-

o

‘a1 2
Tas = Lizg (" * €q)0pin3,4//AF(0).

c
Since Zizlni‘ﬁi/“ - oz, we have

3
),
0
. T, == N0, o%/8¢%(0). (2.38)
?
W
i
; From (2.29), one finds
” n n /n log n,
' ITp2! = 121 + |24 —5, 4 /1(0). (2.35)

From (2.17), by Schwartz inequality,

Py ¥e et »

Can c c c
(Z",,llﬂ \2: znni 2 inni znni 2 2

; | A LD S |
' L B N L
We see that
c
n
a sup{ I n.la  1/n: nel,2,... 4x2 < -, (2.36)
' i=1
1
Also, by (2.18), it is seen that
max{/n log ng/ng: i=l,....¢1 + 0, (n + =), (2.37)

From (2.35)-(2.379, one gets

L)
'.l
Y , A ot ot * N o W e o~ LT A LT R 0030, 3 I N A A
"“n"‘;"'a".l '.o. t"' «". i) n"‘&‘u ~ .. .:“ u.‘ a‘. 1‘1 \n" l‘ ~.. S 1) '\ - Aoy \ \‘r A » " \ \’\" '

LR M e
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1im T, =0, (2.38)
P n2 |

For T ., we note that E(nZ;) = 1/4, so by (2.18) and (2.36),

(o Cc Cc
n n nn,la .|

0D laggInhy /A < 1 laggl/f = 1SR 0.
= 1=

Ia

Considering this and (2.32), we get

T,50, (n+a). (2.39)

Tn4 and TnS can be handled in a similar way, obtaining

P

Lo, 1. -2

T s 0 (n=e) (2.40)

nd

Now (2.28) follows from (2.33)-(2.35), (2.39), (2.40). This proves the
lemma for r = 1.
In order to prove the lemma for general r, take arbitrarily constant

vector t = (tl.....tr)', then
t'g = Zc" na_ e\ m
n i=1 "{%ni" i
where

r
a " i):ltJaM(j). LELIR PRI (2.41)

From (2.19) and (2.20), it is readily seen that
n
Lixp "% =0 = 12,...
c
2
1im I.M nal/n = that.
o L1211

Hence, according to the proved result for the case of r = 1, we have

o't o B ot €, @ P I L I N . .t
», G‘!"' 140,00 e i ‘l' .l'ﬂl‘.‘,‘n N ,“‘.. LT "kk“.'n‘.‘o'l.\‘.k y 'ﬂ \' ' ﬁ' L, b, ~a'ty " 5 ‘- \_V‘ ) \ ) "t N AN

ALY, L T 0 0 e T TR R TR AT MILINTALI S A LN LT N A N TSP TR W
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: t'e » N0, t'at/ar%(0)).

| Since this holds true for arbitrarily chosen t, (2.22) follows, and the
Jemma is proved.

: . Conditions of the lemma can be somewhat weakened., Also, the lemma

| can be proved by resorting to classical methods of Central Limit Theorem,

but verification of the conditions will be quite complicated.
2.4. Proof of Theorem 1

First note the simple fact that if u; =u+ t;g + hi' 1=1, ... k,

Y then there exists a vector t in the convex hull of {t],....tk}. such that

med(u].....uk) =u +t'g+ med(h]....,hk). Using this fact, one sees that
there exists X*. ¢ J . (X depends upon X, Yi, i = 1y esep N, and a, B)

such that

T A5 -

vni = q + X*;B te,=at X'.8 + e * (x*

ni - xni)'B. (2-42)

ni
Therefore, on putting in) = (x;l....,x;c )', one verifies that
n

;£0) - En -1 ! )“ (XIn) X(n)).so (2.43)

We have shown in [1] that under the assumption of the present theorem,

one has

: limP /n=V, a.s. (2.44)
 { mad

Also, the absolute value of the (u, v) element of n'lxzn)wn(xzn) - X(n))'

does not exceed

-

z nyIx{v) . xf‘“’nx‘('") - Xml/n <o R 2 AEAUS SUPY (2.45)

A
! o LW AL, LA et S A N I N NG Y A4 Y SR,
AT R e YOG ‘n £ n\ g n'\u o .l B P € o B, N o T } LS }' ')‘V » p R Dy

uuuuuu
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' . -¢
Here we used the obvious fact that IXIn) - x(n)l <n l. By an argument

similar to that used in [1], it can be shown that

c .
n ‘.
vim ) on, x{9) Cxlod g x0) D)) L as, (2.46) |
i'"ni n
N i=]
From (2.43)-(2.46), it is readily seen that for any given § > 0, there ;
exists (finite constant) " such that
p(|§(°) -8 | <m n-el) >1-8 (2.47) ;
n n'—-"0 : A
K
for n large.
Now it follows from Lemma 1 that ;
M(E, - 8) =t w0, v'1/ar?(0)). (2.48)
The argument is as follows. By definition (2.8), and (2.44), one sees that ,
(2.48) is equivalent to é
n"""v'lx(n)une(n) L. no, v'sar?(0)). (2.49) .
Given xl, xz. ... and consider the conditional distribution of Tn & 0
-1/1.,-1,, )
n v x(")une("), then this is just the case studied in Lemma ! with ,
r=d, and 3
.ﬂ‘(l) ceoe ‘nc (l)
n
a .(2) ... a__ (2)
nl nc = -1,
n V X(n)-

a(d) ..o (d) / Z

n !

It can easily be verified that the conditions of Lemma 1 are met, with )




o w_w
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1 -1

1,, -1 1,,-1 _ :
X(n)HnX(n)V /n =V Yy =YV s a.S.

A=limV
e

So wpl (2.49) holds true conditionally given Xps Xou vans and it stil
holds true unconditionally. From (2.48) it follows that

/|8, -8l = 0(1). (2.50)

Combining (2.47) and (2.50), one sees that there exists ﬁb such that for

n large,

-tl

p(|§£°) -8 <mn ) >1-3s, t, = min(%,el). (2.51)

By (2.42),
cn
vn = q + Xae + En + (X; - Yn)'a. (Y; = 1Zlnix;1/n).

Hence by (2.8) and (2.9)

AL RIS RN ST (2.52)
Since Yn + EX a.s. and IY: - th < n-el. from (2.47) and (2.52) we get a

constant lo such that for large n

P(|&§°) -al <t ) >1-s, (2.53)

Put k = 0 in (2.12), and notice that Yni(j) = g + xai(j)e + eni(j).
we get

V() e xrs v ase (3) ¢ (x, - n (1)) - e

Again there exists X;; in the convex hull of Xoi - x"i(j): j=l.....ni}.

such that

Y'(,}) = X"”B tate x;;t(é'(‘o) - 8). (2.54)

PO

. 22 3Pa’sr’ 2" A" [T TR AT W Y T ) ” I WLV PV S N ) P a®ana B am,w N
.a‘A__‘J',J... A -‘. AL 'y "' ¥ NOYLS f f"-’\"ﬁ" P '\ "\‘ \' Wyt ;‘\,n‘;,t'. ' ALl

L]

'n

‘l
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Since [X*¥| < n 1, from (2.51) and (2.54), it follows by an argument used

earlier that there exists my such that for large n

-~ -(tl+e1)

p(|§§1) - 8, <mn )>1 -6, : (2.55)

Combining this and the fact that lén - 8| = Op(n'llz). we find EH such that

for large n

- -t
P(leﬁl) - 8] §.ﬁin 2) >1-68, t,= min(%, ti+e,). (2.56)

From (2.8), (2.12) (setting k = 0) and (2.54), one gets

ALUNE RS CHT J0 OIS (2.57)

-€
From (2.51), (2.55), and the fact that IY:*I <n 1. we find tl such that

for any large n

-(t,.+
P(I'(l) ART L el)) >1 - 8. (2.58)

In deriving (2.58) one should also note that, as shown above, the event

- -(t,+
{IB(I) - 8,1 <mn 1) al0) }.

} is a consequence of {lg," - 8| < mn

Continuing this process, one finds generally that there exists constants

my s m, and £,, such that for n large we have

- - -(t, +ey)
p(|sf"‘) -Bl<mn K Uy 1o (2.59)
-t
P(IE,(,") -8l <mn khys 1. (2.60)
-(t +e,)
P(l&f,") EARY X Ty s (2.61)

with

"'»'. N ‘-."’-\sxx e s\""’"' " -."\"\\"'\\"
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s min(d
Since re; <1/2 and (r + l)el > 1/2, we have t, = iel for i <r, and so
t.te = (r + l)el, t,41 = 1/2. Therefore, on putting k=r+1in
(2.59) and (2.61), we get (2.15).
In view of (2.15), (2.14) is equivalent to

/n [(;’5 <:>}—Lr Ngaep (007 72¢%(0)) (2.62)
n

As én and &n are linear functions of €(n)» (2.62) can easily be proved by

~using Lemma 1, the argument is just the same as we employed in showing (2.49).

This concludes the proof of the theorem.

The assertion (2.14) still holds true when r + 1 in the left hand side
of (2.14) is replaced by r, or by some k > r + 1. But iterating beyond
(r + 1) rounds is non-profitable, in view of the fact that tyl St ©

... =1/2,

0
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3. ESTIMATION OF PARAMETERS IN TRUNCATED CASE

In this section we study the case in which the dependent variable

is truncated at zero. If the original values of Y are 71. cees ¥, then

Py - 2y

actually we observe

Yi = YiI(Y,i > 0), i=1,...,n.

T

Introduce J; as we did in Section 2.2. Choose constants c' > 0,
€' € (e].e1,l), where € has been introduced at the beginning of Section
) n
2.2. Divide J* into three disjoint parts. Let H, = Zj:]((Yni(j) > 0).
el
' = . 'y 1 i =
! J;] {Jni’ H1 > ni/2 ten,', s 1,...,0n}
el
= . [] i : -
': J;z = {Jni' Hi < ni/Z -c'ngt, = 1,...,0}
v Jp3 = Jp - LR Ud*g,).
P -
- For convenience, we shall in this section write x'y for o + x'8, by intro-
ducing x = (1,x')’ and vy = (a,8')'. We use x and a to replace x and v.
In this way we change a + x'8 to x'a.
The following lemma will be used in the sequel.
2 LEMMA 2. wpl we have for any given e; < ej.
‘ -1*55
* ' =
) Jni € Jni® Ko 20, . i 2 1,00.,0 (3.1)
‘ -1+eé
' Jni 6 J;Z aniu: 'ni s 1= ]'oooon (302)

for n sufficiently large.

-l+eé
Proof. Assume that Xaia <n; , then

-1+eé -£, -1+eé -€, -1+e0

xﬁi(j) <n, +n <n +ng o2y . J=1ls..00n

for some eg < ei. Hence, in order to have Jni ¢ J*

e the inequality

BN YR Y e e v,
Py Vo F My 0,

IS SB T TR
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n,

Z[(e ;(3) > -n, 0)>%n.+cn
=27

j=1

must be true, On the other hand, from the assumptions made on F (see

Section 2.1), one can find constant ¢c" > 0 such that

-1+so -1+e0
P(e (J) > -n, ) <172 + c"n

Using Hoeffding's inequality (2], and abserving that

€
e < VW2 =e'>1-¢ >1/2, n;>con 2 (see (2.7)),

we get for n large

-]"'e.l '1+€0
Pr(J 5 € J%) < P*(|H In, -pl > ¢'n, - c''n, )

']+€]

~l+eq
< p* (|H /n; -p| > %—c n, ]) < 2exp(-n; (]c n, )2/3) 1,,'3 (3.3)

simultaneously for i = 1, ..., Cyo where P* = P*(x],xz,...) is the conditional
distribution given X;, X,, ... . Since (3.3) holds for each (X],Xz,...),

we get for n large

-3

P(J.5 € J%) < n (3.4)

simultaneously for i =1, ..., €, Introduce the event

. -1+eé

*
X .o < n, but Jni € Jn1}‘

= {for some i = 1,...,cn. ni

Ey
Then since ¢ < n, we have P(E ) < cn/n3 < n2, yielding

P(En i,0.) = 0

-]+52
i
and n sufficiently large. This is just (3.1). (3.2) can be proved in a

— o
which means that wpl xﬁi“ <n *'Jni € Jry foralli=1, ..., ¢

n

similar fashion.

A ~ ' " f..f‘f'.“ .' : f\f.,-'.. ,.J‘, .'\.'_..P .' 2, ."_- ‘.' & ._ L4 \ .’ ‘_‘t .ﬂ,\.. ..,'_ .\.‘- Vot , .\.,‘. >
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3.1 Estimation Using Only J;i ~-cells

If a cell Ini belongs to J;], then, although the observations of the
dependent variable related to this cell might have been truncated, the med-
ian of the original observations can still be calculated. Therefore the
method of the previous section can be applied to the collection of these
cells, yielding an estimate for a.

In order to avoid the introduction of numerous new notations, from
now on in this section we shall redefine Jn1’ cens Jncn as the elements in
J;]. Other notations in Section 2, too, are redefined in accordance with

this change. For instance, the symbol Nn should be understood as
N = z . _ * Nie
n {"Jnie‘]nl} i

Ending this process we get a redefined estimate of o (the original (a,R')),

which we now denote by &£r+]).

For this estimate the following theorem is true:
THEOREM 2. Suppose in addition to the conditions of Theorem 1 that
P(X'a>0) > 0. (3.5)
V = cov(X|X'a>0) > 0. (3.6)
Then, as n » =, we have

M@ Ly Laowgo, ¥ ar2(0)).

Proof. On account of Lemma 2, this theorem can be proved by largely

the same method employed in proving Theorem 1. So the details are omitted.

oy Voo TR L N, Ry B e B e N e e e S N e T W S N Lt e e N e e T N N AT AR .
Ja% c’. |',.‘n‘e‘t‘-l.-lql'-l.l.",‘l‘-b -. l‘\ \l‘l » *" ‘-ki "’ ‘0,» p L) " J‘"PV.J‘ W .. 'f *“.‘.n ‘.' N ) -Flf ‘. . vl W,
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3.2 Tobit-Type Estimate

In this subsection, in addition to the cells in J;1, use will be made
on cells belonging to J;z in order to form a Tobit-type estimator for a. It
is believed that by so doing we are able to make some improvements on &£r+1)
discussed earlier. As Nawata declared in [5], his simulation results in some
cases seem to give support to this belief. Theoretically, the problem is
complicated as the probable improvements are likely to depend on actual situa- '

tions (underlying distributions, sample sizes, method of decomposition of the

range of independent variables, etc.) and would be difficult to justify in a

reasonably general setting.

Now use Jn]’ cees jnd to denote the cells belonging to J;Z. The center
of J ; will be denoted by LI B P d.. Put m; = #(Jni) (the number |
of elements in J .M {X;,...,X }), and

d c

n n
L{a,o) = 1 o(-ﬁi;laia/c) I o']exp[-n.Y(r+])
i i=]

. 2,, 2
X i¥ni -Xnia) 125°] (3.7)

where ¢ is the distribution function of N(0,1).

If (a;,o;) maximizes L(a,c), we use ar as an estimate of a. This kind

of estimate was first considered by Tobin [9].

We shall prove the following theorem.

THEOREM 3. Suppose that in addition to the conditions of Theorem 2,
we have

E|X|2+‘S < = for some & > 0, ‘

Choose e, < 6/(4 +25) (see the beginning of Section 2.2), and e, in (3.1), that

eé > 1 - 8/(4+28). (3.8)

TMTAT e AT T a " s
.\’\_;\.{ﬂ..,w BRI
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Then, as n > «, we have
N (a* - a) —5> N0, v/4£2(0)) (3.9)

where V is defined in (3.6).
This theorem indicates that in the asymptotic sense the Tobit-type

. . ~(r+
estimator a; makes no improvement over aﬁr 1)

» which is the ordinary LS esti-
mator based upon only the cells in J;]. Needless to say that in practical
applications the sample size n may not necessarily be large. In such cases
the question remains as to which one is superior over the other.

In defining a; we make no use of those cells which do not belong to
J;I‘JJEZ' From a practical point of view this poses no serious problem, as
we always can choose Co» €p> c{, si small enough to allow the inclusion of
more cells. Theoretically speaking, as long as P(X'a=0) = 0 (which is the
case when X is non-atomic), the proportion of sample points not used in the
definition of a; goes to zero as n » », Nevertheless, it is interesting to
ask whether or not it is possible to invent a trick which enables us to use
all sample points in the definition of a;, while allowing the number of cells
to go to infinity and retains the basic asymptotic property of a; as described

in Theorem 3.

The proof of Theorem 3 will be preceeded by several lemmas.

LEMMA 3. Suppose that £y 52' ... is a sequence of iid. random vari-

ables, and E151|a < » for some a > 0. Then

Vonax( |y 15...ale ) = 0, aus. (3.10)

lim n”~
n->
Proof is simple.

LEMMA 4, Denote the residual sum of squares by

-------
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Cn
Z (Y(r+1) x$1—£r+1))2 (3.11)

Then, under the conditions of Theorem 2, we have wpl

G2 4 P* 2

n = R /C —_— gge (n-> ) (3.12)
where
cg = (4f%(0))"! (3.13)

P* = P*(X],XZ,...)

the conditional probability
measure given Xy, Xz, cee s (3.14)

Proof. We proceed to show that WP1 there exists random variable

2
Ny =~ xcn-d’ such that

=-€
Rn/og - ny - 0 (/e WP oo, (new). (3.15)

From this, (3.12) follows at once.

In order to prove (3.15), we rewrite R, as

1), 1., 1
R, = vﬁ'* ) (W, = W X3P x(n)wn)v’(‘r+ ), (3.16)

Notations involved are defined in Section 2.2. Put

Wl ).

n
It is not difficult to see by definition (2.10) and Theorem 2 that

Z.= xaia te is= 1,....cn. Z = (2

ni n nl’ " *"nc

) (3.17)

(r+1)
Y
n ncn

=7 0+ &g En = (Eqqseeeit

where gl +++0 Epe ATE random variables uniformly (ip i) of the order

n

L. "'.-lq.q---I‘-l"ll""‘l'w‘f d"n“
D e s O o Ay I AT AR 1 S

AR SR LA R (R
* L3 o - L 2
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'(1/2"'51) *
Op(n as n + =, which means that for arbitrarily given ¢ > 0, a
constant ME exists so that for n large
"(]/2"'5])

P(lg ;1 < Mn » = 10) >0 - e (3.18)

Put
= -1 H
Ry zA(Nn"wnx(n)pn x(n)wn)zn' (3.19)

Then by exactly the same way as in Theorem 1 of [1], we can show that wpl

there exists n_ ~ x2 » Such that
n cn-d

s 2 p*
R"/c:t0 -, 0. (3.20)

This is true because the strong approximation of e in [1] is valid to €ni

in this paper also, as we indicated in Lemma 1. Now
R ' ' -1
|Rn- Rnl = Ean£n+2 e(n)(Hn-HnX(n)Pn Xin)un)‘c’,nl. (3.2])

From (3.18) we have

' =
En¥nn Op(n ). (3.22)
-1

By Schwartz inequality, writing Qn = "n - unx(n)Pn

S(n)un' we get
[ ] 2 [} [ ]
(e(n)Qngn) 2 ¢(n)%%(n) 5nlntn
hd eEn)one(n)'gr‘\“ngn

R “EIW £ .

From this and (3.20), (3.22), we have

=2¢

(e{n)0tn)” = Oplcn ). (3.23)

Now (3.15) follows from (3.20)-(3.23) and Lemma 4 is proved,

00 OO RO I Al AU s 0 Ly " oy 0 ) LS (O ] % QA N
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LEMMA 5. Under the conditions of Theorem 3. the sequence {o;} is

bounded in probability.

Proof. First we make an estimate on L(&£r+]), °n)' For this purpose,

note that by Lemma 2, wpl we have

-1+
l"‘ia < n, 2

n » T=1,0.0,c (3.24)

£r+1) - 05("-1/2)' and by Lemma 3 (consider-

< =) for arbitrarily given ¢ > 0, we have for n large

for n large. By Theorem 2, a - a

ing that E|X|2+6

POIXY o= alm Ty < nm8/IB928) oy ey s - (3.25)

By the choice of eé. -1 + €y > -6/(4+425). Hence from (3.24) and (3.25), we

have for n large

(re1)  1.7V%
~(r
P(X0i% < -3 R LI PPRRRT-0 R IE-P (3.26)

Combining this with (3.12), we have for n large

, ~(r+l) 1 "1

P(x ian :.Tmi ,i’]....,c

X o, < 200) >1 - €. (3.27)

n'
€2 1
Since my > con (see (2.7)), and eé > 1 « §/(4428) > 7» We have

a=1-201-¢5) 50

and

-1+¢}

a
m, (m, 2 €2

zsﬁzcw s, T =1,...,d .
Since o(t) > 1 - (/ZFt)"exp(- t2/2) for t > 0, and log(1 -x) > -2y for
x > 0 sufficiently small. We see that, in case the event appearing in the

left hand side of (3.27) occurs, we have

DN & 0N
L A% 3O, nt‘?‘a‘-ﬁ‘\ % L l"‘h‘. "“l‘:
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d" a / a
a € €
! 10911'1] 0(-/711,"10'(‘"‘)/0") > °2dn exp(-con 2 /Bag)/(/hcon 2 oo)
> k. 0, as n-> = for any k > 0. (3.28)

Therefore, for arbitrarily given ¢ > 0, when n is sufficiently large,
we have

-C -cn/2

pLal™, o) >0 Me M) 1 - e, (3.29)

But if o > /e o0 We shall have

-c -c. -¢ /2
L(a,0) <o "<-zanne n

for any a and n large. From this fact and (3.29), we see that

) P(a"‘ < 2/e o") >1 - ¢ (3.30)

for n large, and this concludes the proof of the lemma.
| ~(r+1)
Now we can prove Theorem 3. Given ¢ > 0, for any ag with ||ao- % Il

> ¢//n, we have

C
‘ 1 & (en 2
1og Llag.of) < -nTogo} - —7 12}(\!&1 Yo xtap)

Salrl)y

= -n log o; - R"/20;2 - (ao-&’(‘rﬂ))'Pn(ao

We recall that P_ = xin)unx(n). Since P /n > A = COV(X|X'a>0) > 0, we get

wpl for n large
* * *2 2
log L(agsof) < -nlogo? - R /208" = xe"/2 (3.31)

simultaneously for all a, such that “ao- a’("‘” )|| > ¢//n, where A > 0 is

the smallest eigenvalue of A

Soa b

. PP o N . ) ‘ \ o . “
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4 On the other hand, (3.28) still holds true when o, 1s replaced by any
. o' > 0. The convergence to zero would be uniform for o' < 204s in case
;v ‘ that the event appearing in the left hand side occurs. Therefore, in cases

that the events appearing in the left hand side of (3.26) and (3.30) both

} occur, we shall have

$ (r+1) 2
:f log L(&n .o;) > -log o; - Rn/ZO; - € (3.32)
N where 1im ¢ = 0. From (3.31) and (3.32), we get
o e N
P(sup{L{ag, %) : ||a°-a’("*‘)|| > e/} < L(&'(‘r+1).o;)) > 1 - 2
; for n large. This implies that
G PClag - 87D 2 ersf) < 2
o
for n large. Therefore
- (r41), P
Ay N r*
N /ﬁ(a;-an ) — 0, (n-+ =), (3.33)
N
Now (3.9) follows from Theorem 2 and (3.33). This concludes the proof of
. Theorem 3.
:
A 3.3 Estimation of og
ﬂ Under the method of estimation of the present paper, from a large-sample

point of view, og defined in (3.13) plays the role of error variance.

R )

similar to the case of a, we can define two estimates of cg. One is

o:. which uses only those cells in J;1 and is the common estimate of error

. = ow -
T N

variance based on the residual sum of squares. Another is 0;2. which is a
kind of maximum 1ikelihood estimate in the Tobit model. The following lemma

reveals that these two are asymptotically equivalent.
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LEMMA 6. Under the condition of Theorem 3, we have

n‘(o;'-o") -0, a.s. (n=+ &) (3.34)
for any constant a > 0.

Proof. By Lemma 5, (3.28), we have wpl

d d
n
log n]o( "ii—x‘1 ag/op) - log n o(- di'x a(' ‘)/c ) <n” (3.35)
i= i=]

for n large, where k is arbitrarily given. Further

n

A
= -1 _ (r+1) ' 2 2
T, = log 121 on” expl-n (Y 7 - X0 at)C/20%°]

Cc
n
- log 121 o;] exp[-n, (Y(r*j) X! a £r+1))2 ]
n (1) 2
AP LI LNS n ] r+1)y2
2% 121 " i 22 A (i - x"’ )
n

- * 3 .
Cn log op * ¢, Tog %n

Since
(r+1) o (e)
r+l , 2 2 r¢l) 0 2(r41),2
2 Mt Haicn)” 2 LU= Xaga 0% = Ry
we have
Ty < Rn(o;Z‘-cﬁ)/(Zoﬁo;Z) -c, 1og(o;/on)
= ¢ [(1-x%)/2 + log x] < -, Ix-11%2 (3.36)

where x = o /ar. Hence, if IO"/O;"1| > en”d, then, by (3.35) and (3.36),
we shall have, on taking k = 2a + 1 in (3.35), that

- [y » ; “ w
0t DTGP a0 Ve '\, e & XN X PN NN v



log L(a;.a;) - log L(&£:+]).on) <0 (3.37)

for n large. But (3.37) is impossible as (a;,c;) maximize L(a,0). This

shows that wpl we have
In®(o2 -0, )| < ¢
: for n large, and (3.34) is proved.

THEOREM 4. Under the conditions of Theorem 3:
1°. 1f X is purely atomic with ¢ distinct atoms, d < ¢ < =, then as
n->o

2 L .2 2 L 2 .
/Uo—_' Xx_d, 0;/00—" Xc_d. (3.38)

(o]

2
n

2°. In other cases we have as n + «

ol - ob) /T L (N, 0) (3.39)

‘ v'c_n'(ozz-og)//? L. (N, 0 (3.40)
and

: 2cnon/cg - Rlc, -d) L, o, 1) (3.41)

/Zc"o;2/002 - /2(cn -d) - n(0, 1), (3.42)

y Proof. In case 1° we have wpl c, = ¢ for n large. By (3.15), wpl,
under P* we have aﬁ/og L. x:-d' Hence this is also true unconditionally.
This proves the first assertion of (3.38). The second follows from the
first and Lemma 6.

In case 2° we have c,* =» a.s. From (3.15) and the central limit theorem,

wpl, under P* we have (3.39). So (3.39) is still true unconditionally. (3.40) 1

follows from (3.39) and Lemma 6.
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(3.41) follows from (3.15), and the following two facts:

a). if £y - x:, then JZgn -vm-L N(O,1), as n » =,
, b) /x+a(x) - ¥x » 0, as x + = and 1im a(x)//x = 0.
! X-»c0

(3.42) follows from (3.34) and (3.41).
1
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4, TESTING OF LINEARITY

In practical applications we are often not sure that the regression
function (the conditional median of Y given X) is linear, and a test for
this hypothesis is desirable. In this section we shall propose such a test.

The idea behind the test is quite simple and is similar to the one
proposed in [1], where the regression function is defined as E(Y|X=x) and
no truncation is allowed. From now on we use H0 to denote the linear hy-
pothesis (2.3).

If (2.3) is not rure, then the residual sum of squares R,» defined by
(3.11), tends to become larger. Therefore a reasonable test of HO is to

reject it when

Ry >¢C (4.1)

for some C, and accept it otherwise. C is chosen according to the pre-

assigned size age In order to do this, we have to find an estimate Eﬁ of

og = (1/4f2(0)) such that (3.15) still holds true when og is replaced by
Bﬁ, under HO‘ For if such an estimate Eﬁ has been found, then (3.41)

remains valid when og is replaced by Gﬁ (under HO), and we can choose
C = 32(/2c=d) +u_)or2 (4.2)
n n 00 .

where u_ s defined by o(uOl ) =1 - age The test (4.1) is asymptotically
0 0
similar with size age *

The problem of estimating og is reduced to the problem of f(0), the

value of the density function of e, at zero.

2

2 .
n of % satisfies

It is easy to see that if an estimate o

=2 2y P
v/cn(cn-go) —— 0. . (4'3)

. - - - . - 2 - - - - - - - - - . - . - - -~ a® o - - - - » ‘w ( .
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Then Eﬁ will have the property required in Section 4.1. It is obvious

that if we can find an estimate fn(O) of f(0) such that

P
/(00 - £(0) Er o, (4.4)

then 52 £ (af (0))! satisfies (4.3).

Choose € € (0, 1/3d) in the definition of J; in Section 2.2. Since
€ < 1/3, we have ei > 2/3 in the definition of J;]. Take eé >1 - £ in
(3.1), then 1 - ¢5 < 1/3.

Choose ¢, e (0,(52-3)/4)(see (2.5)) and ¢y > 0. Select out such
cells I in an satisfying the condition

€0
xel = |x| e - (4.5)

For convenience we shall denote all these cells by Jnl’ cees

Define
o= e V() =-x sl ean 3, 5a0 o, i
Since
x (@6 2 (xe (5) - x0T e G0 gy 4 G (4.6)

and from Theorem 2 we have

s(r+1) _ (r+] - -1/2
Mo m, s el = 0 eV,

[
Also, |x' (i) - X' | <n 1, lxﬁil < N 0 for i = 1, ...5 g and by
Lemma 2, wpl xéi“ >n 2, T =21, ceey <h for n large. We see from (4.6)

that

Hm P(E) =1 (a.7)

b | AT AT A AT At LCATALE T TN PR P
i -"0.‘.‘"}‘.-00' -lo.o Y " 0 \;l' oL




where En is the event

En = {jeIm. for some i=1,...,cr'. = Ym.(j)>0}, (4.8)

e
e

When En occurs, the number of elements 954 in Ini can be calculated from

the truncated observations of the dependent variable Y, and the quantity

s © é

9 = Lia19ns '

L

is well defined in En (can be calculated from the truncated samples when ]
E, occurs). R
Since ‘
(i () = X0 D)y e ()] < 011G g, '.~

there exists constant A such that s
"

Vim P(E,) = 1 (4.9) ,

N ' ’

where ’
~ -]/2"'5

- a(r+] : ,

E, = U0 (@) - X (M) e () <m0,

j=1,....n1, i=1.....cn}. (4.10) >

b

b

Now define an estimate of f(0) as follows: .
1/3 N

gn/(Zn Na), when E_ occurs ¥

fn(o) = (4.1)

0 » otherwise ‘
A J

Nn s l'l] + X + nc’.'. :

and proceed to show that this estimate satisfies (4.4). For this purpose, J

put . | s

R LA ~ ) X n, S A LN Yo, 1 AN T W) NN
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gn(é,b) = the number of elements in the set

{(i!j):a<eni(j)<b: j=1,0--3n.is i=1,...,¢'}

and define
£,100) = g (-n"1/3, n713) (2071 3y

230-1/2

2e~-1/2
+n , N 0

-1/3 -n )/(2n"1/3N,'1)

£ ,(0) = g (-n -1/73

2¢,-1/2 _]/3.+n2€0-]/2

£ 5(0) = gn(-n"/3-n N )/(2n°]/3N"‘).

From the well-known result in the theory of density estimation (see [8],

Chapter 2) and the easy fact that

1im inf N;/n >0, a.S.» (4.12)

N>

under the assumption of Section 2.1, we have

£ 1(0) - £(0) = op(n"/3). (4.13)
Since
' 250-1/6
fnz(o) = (1+0(n ))fn1(0)
250-1/6
fn3(0) = (1+0(n ))fn](O).
from (4.13) we have
250-1/6
fa2(0) = £(0) = 0 (n )
250-]/6

fn3(0) - f(0) = Op(n ). (4.14)

On the other hand, it is easy to see that when n is large and the event

Enn En occurs, we have

fnz(O) < fn(O) < fn3(0).

-
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3 Therefore, from (4.7), (4.9) and (4.14), we get
¥ 280']/6

] fn(O) - f(0) = Op(n ). (4.15)
! 1/2-¢,/2

But /q = Op(n ) (see (2.6)), and since eg < (52-2/3)/4, we have

i 1/6 - Zeo > 1/2 - 62/2. From this and (4.15), we finally get (4.4).
|
D)
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A
3
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